SUPPORTING INFORMATION

Figure S1: Conformational landscape of 1-hydroxynaphthalene: Potential energy curve resulting from the MP2/cc-pVTZ calculation (values at equilibrium). Energies are indicated relative to trans-1-hydroxynaphthalene. Angle values are corresponding to the C-C-O-H dihedral angle.

Table S1: Results from the energy calculations on the hydroxynaphthalene molecules. Δ_E values are relative to the lower energy conformer of each species.

			1-hyo	droxynaphtha	ılene	2-hy	droxynaphtha	ılene
		. 1	cis	TS	trans	cis	TS	trans
100	Ē	L.	0477761 137	1000061 191	6001361 131	9170961 194	7761061 1 <i>3</i> 7	1920000
B9/-1~	E _{eq}		-401.1344478	-401.1302821	-401.1304003	-401.1308/10	-401.1301344	-401.1339809
	$L_{\rm ZPE}$	$/ L_h$	-400.9839370	-400.9802350	-400.9854290	-400.9800080	-400.9803100	-400.9893100
	З	$ m /~cm^{-1}$	87.70	330.20	140.10	122.10	350.90	122.30
	$\Delta E_{ m eq}$	/ kJ/mol	5.1	16.1	0	0	17.69	2.34
		$ m /~cm^{-1}$	429	1,343	0	0	1,478.64	195.49
	$\Delta E_{ m ZPE}$	/ kJ/mol	3.9	11.7^{d}	0	0	13.0^{d}	1.97
		$ m / cm^{-1}$	323	975^d	0	0	$1,088^{d}$	165.04
$MP2^{b}$	$E_{ m eq}$	$/ E_h$	-460.1680434	-460.1643641	-460.1699345	-460.1698188	-460.1636588	-460.1688217
	$E_{ m ZPE}$	$/ E_h$	-460.0171110	-460.0135300	-460.0183590	-460.0184030	-460.0130740	-460.0175580
	Э	$/ \mathrm{cm}^{-1}$	-57.20	332.10	138.40	120.90	340.90	120.90
	$\Delta E_{ m eq}$	/ kJ/mol	5.0	14.6	0	0	16.2	2.6
		$/ \mathrm{cm}^{-1}$	415	1,223	0	0	1,352	219
	$\Delta E_{ m ZPE}$	/ kJ/mol	3.3	10.7^{d}	0	0	11.9^{d}	2.2
		$/ \mathrm{~cm^{-1}}$	274	895^{d}	0	0	994^d	185
$hybrid^c$	E_{ZPE}	$/ E_h$	-460.0175526	-460.0143170	-460.0189632	-460.0190152	-460.0138344	-460.0181568
	$\Delta E_{ m ZPE}$	/ kJ/mol	3.7	10.2^d	0	0	11.5^{d}	2.3
		$/ \mathrm{cm}^{-1}$	310	855^d	0	0	962^d	188
	$\operatorname{Pop.}^{e}$	%	18		82	71		29
	$\Delta E_{12}{}^{f}$	/ kJ/mol		Ι	0.1	0	I	I
		$ m / cm^{-1}$			11	0	I	
^a B97	-1/cc-pVTZ	Z anharmoi	nic calculation	^b MP2/cc-l	pVTZ anharmon	ic calculation	^c hybrid B97	-1/MP2/cc-
pVTZ	calculatior	ı, see text	d For the t	ransition states	s, ΔE_{ZPE} is calc	ulated according	g to the formul.	a $\Delta E_{\text{ZPE}} =$
E(TS)) - E(GS) - E(GS)	$-\omega(TS)/2$	^e Populatio	n at 300 K	f Energy differer	ice between the l	ower state conf	ormers of 1-
and 2-	-hydroxynal	phthalene						

Table S2: Results from the energy calculations on the naphthaldehyde molecules. Δ_E values are relative to the lower energy conformer of each species.

			1-r	aphthaldehy	de	2-1	aphthaldehy	le
			cis	TS	trans	cis	TS	trans
	Ĺ	l L						
B9/-1"	$E_{\rm ed}$	/ Eh -	-499.2309962	-499.2233235 400.02949	-499.2339542 400.079906	-499.2380084	-499.2243882 400.0005777	-499.2398478
	LZPE	/ Lh	-423.000312	-433.00042	-433.010200	-433.002342	110600.664-	-433.004122
	З	$/ \mathrm{cm}^{-1}$	85.6	158.6	84.4	86.3	173.9	78.8
	$\Delta E_{ m eq}$	/ kJ/mol	0	35.9	8.0	3.3	40.6	0
	•	$/ \mathrm{cm}^{-1}$	0	3001	668	272	3393	0
	$\Delta E_{ m ZPE}$	/ kJ/mol	0	32.0	7.3	3.1	37.1	0
		$/ \mathrm{cm}^{-1}$	0	2676	209	259	3105	0
$MP2^{b}$	$E_{ m eq}$	$/E_h$ -	498.1872922	-498.1752513	-498.1841598	-498.1880392	-498.1751578	-498.1893045
	$E_{ m ZPE}$	$/ E_h$	-498.030536	-498.01949	-498.027667	-498.031632	-498.019528	-498.032875
	З	$/ \mathrm{cm}^{-1}$	79.3	145.3	65.7	83.7	162.9	22
	$\Delta E_{ m eq}$	/ kJ/mol	0	31.6	8.2	3.3	37.1	0
	4	$/ \mathrm{cm}^{-1}$	0	2643	687	278	3105	0
	$\Delta E_{ m ZPE}$	/ kJ/mol	0	28.1	7.5	3.3	34.1	0
		$/ \mathrm{cm}^{-1}$	0	2352	630	273	2848	0
$hybrid^{c}$	$E_{\rm ZPE}$	$/ E_h$	-498.031268	-498.0203478	-498.0284116	-498.0323728	-498.0203466	-498.0335787
	$\Delta E_{ m ZPE}$	/ kJ/mol	0	27.7	7.5	3.2	33.7	0
		$ m / cm^{-1}$	0	2317	627	265	2817	0
	$\operatorname{Pop.}^{e}$	% /	95		IJ	22		78
	$\Delta E_{12}{}^{f}$	/ kJ/mol	6.1	I	Ι	Ι	Ι	0
		$/ \mathrm{cm}^{-1}$	507	I	I	I	I	0
^a B97.	-1/cc-pVTZ	Z anharmonie	c calculation	$^{b}~\mathrm{MP2/cc-f}$	VTZ anharmon	ic calculation	^c hybrid B97	-1/MP2/cc-
pVTZ	calculation	n, see text	d For the t	ransition states	s, ΔE_{ZPE} is calc	ulated according	to the formul	$\Delta E_{\rm ZPE} =$
E(TS)	-E(GS)	$-\omega({ m TS})/2$	^e Population	1 at 300 K	f Energy differen	ice between the l	ower state conf	ormers of 1-
and 2-	naphthald€	shyde						

Table S3: Energies in kJ mol⁻¹ of the four conformers of naphthaldehyde relative to the most stable isomer *trans* 2-naphthaldehyde computed at various levels of theory. CBS values are extrapolated from aug-cc-pVTZ and aug-cc-pVQZ basis set calculations.

Method	1-nap	hthaldehyde	2-nap	hthaldehyde
	cis	trans	cis	trans
MP2/cc-pVTZ ^a	5.3	13.5	3.3	0.0
$\mathrm{MP2/CBS}$	5.8	13.9	3.6	0.0
$\mathrm{CCSD}(\mathrm{T})/\mathrm{CBS}$	6.6	14.0	3.6	0.0
$\mathrm{PNO}\text{-}\mathrm{LCCSD}(\mathrm{T})\text{-}\mathrm{F12}/\mathrm{aug\text{-}\mathrm{cc\text{-}}\mathrm{p}\mathrm{VTZ}}$	6.7	13.8	3.5	0.0

^aSee values reported in Table S2.

Table S4: Calculated IR fundamental vibrational modes of *cis*-1-naphthaldehyde and *trans*-2-naphthaldehyde and comparison with proposed experimental assignments. Energies are given in cm^{-1} and intensities in km.mol⁻¹.

			с	is-1-naph	thaldeh	yde			tr	ans-2-nap	hthaldel	hyde	
		B9	7-1	М	P2	Hybrid	Exp.	B9	7-1	М	P2	Hybrid	Exp.
ν	sym.	$E_{\rm h}$	$E_{\mathbf{a}}$	$E_{\rm h}$	$I_{\rm h}$	E	E	$E_{\rm h}$	$E_{\rm a}$	$E_{\rm h}$	$I_{\rm h}$	E	E
1	A'	3224	3070	3268	7.5	3114	3064	3189	3062	3234	3.5	3107	
2	A'	3184	3062	3232	8.5	3109	3064	3185	3061	3233	11.6	3109	3070
3	A'	3182	3077	3230	14.0	3125	3064	3173	3052	3220	13.4	3099	2980
4	A'	3167	3032	3215	10.5	3080	3064	3161	3045	3205	0.7	3089	
5	A'	3158	3055	3202	6.4	3099	3064	3159	3009	3203	5.3	3053	
6	A'	3154	3009	3200	0.4	3055	3064	3155	3013	3200	2.3	3058	
7	A'	3150	3018	3195	2.7	3064	3064	3143	2998	3184	6.1	3039	
8	A'	2861	2684	2936	118.0	2759	2721	2870	2680	2949	108.4	2760	2717
9	A'	1772	1743	1740	161.0	1712	1715	1781	1752	1745	231.6	1717	1720
10	A'	1653	1611	1669	3.7	1628		1660	1620	1678	6.0	1638	1637
11	A'	1626	1592	1625	7.0	1591	1601	1635	1599	1635	4.5	1600	1603
12	A'	1605	1566	1619	11.1	1580	1583	1606	1572	1617	5.2	1582	
13	A'	1542	1504	1561	29.8	1523	1516	1539	1504	1556	2.2	1521	1400
14	A	1488	1456	1495	0.9	1462	1 455	1495	1467	1506	10.7	1478	1468
15	A'	1474	1437	1491	7.3	1454	1457	1471	1439	1491	12.7	1459	1447
10	A'	1438	1405	1481	5.2	1448	1457	1424	1408	1472	2.5	1456	
17	A'	1418	1378	1443	2.9	1404		1401	1363	1450	0.1	1418	
10	A,	1000	1001	1455	2.0	1399		1000	1007	1410	1.0	1360	1947
19	A^{\prime}	1308	1333	1414	2.0	1381		1309	1338	1374	20.2	1343	1347
20	A,	1292	1249	1290	2.1 19.6	1240	19902	1200	1271	1294	37.3	1279	1202
21 22	А ,	1237	1211	1200	16.5	1240	12201	1270	1200	1264	4.5	1201	
22	л, л,	1180	1165	1240	10.5	1168	1214:	1184	1163	1209	41.5	1174	1154
23	Δ,	1184	1155	1192	2.7	1152	11/1	1179	1154	1155	41.5	1160	1104
24	Δ,	1165	1142	1166	2.1	11/2		1165	1166	1161	0.1	1163	
26	Α,	1097	1077	1100	2.3	1084		1137	1124	1136	21.6	1123	1121
$\frac{20}{27}$	Δ,	1069	1041	1074	35.4	1046	1056	1039	1022	1047	21.0	1030	1121
28	Α,	1042	1041	1074	3.9	1040	1000	969	956	970	1.0	956	
29	A'	895	881	893	15.3	878	887	891	879	893	6.2	881	882
30	A'	805	795	807	0.7	797		785	774	789	21.2	778	785
31	A'	718	704	718	15.1	704	712	766	755	767	23.7	757	763
32	A'	659	649	656	18.3	646	647	640	633	632	1.9	626	
33	A'	553	547	551	2.5	544	548	612	606	609	3.6	603	603
34	A'	502	495	498	1.6	492	497	520	514	516	0.1	511	
35	A'	437	433	434	1.5	431	430	390	389	386	5.5	384	388
36	A'	366	362	360	0.1	356		349	350	348	2.8	349	
37	A'	218	166	219	6.5	166	225 ?	177	184	175	6.0	183	177
20	A 11	1000	1009	1015	0.4	005		1000	1011	1010		1001	
38	A''	1022	1003	1015	0.4	995		1028	1011	1018	1.1	1001	
39	A''	1016	1011	977	0.7	973		1002	994	968	0.1	961	
40	A''	995	994	962	0.8	962		998	995	960	0.1	957	
41	A"	979	975	951	0.1	947		972	968	948	1.5	943	9
42	A.,	937	930	909 870	0.0	902 856		910	909	070 950	9.7	009 049	- 957
43	A ^"	090 072	000	810 806	0.0	801	800	000 049	004 991	009	20.1	840 800	820
44	A,,,	823 702	777	755	91.7	740	802	040 788	778	000 754	33.4 97.7	044 745	820 749
40	Δ.,	753	740	705	0.0	740		760	751	704	21.1 0.2	745	142
47	Δ.,	630	637	614	0.0	612		645	640	620	0.2	614	
48	A"	539	529	529	6.0	520	525	512	508	5020	0.3	497	
49	A"	479	472	469	0.0	462	020	485	479	477	15.9	471	472
50	A"	414	408	407	3.6	402	400	401	395	393	0.0	387	
51	A"	273	266	265	5.0	258	255	297	289	203	3.3	285	
52	A"	181	178	178	0.9	175	200	192	188	187	4.7	184	181
53	A"	152	146	147	3.7	141	143	160	156	157	4.8	152	152
54	Ā"	86	76	79	3.5	70	76	79	78	77	1.6	76	

Note. h in E_h stands for harmonic, and a in E_a for anharmonic

		$\frac{MP2}{B_e}$	Δ^a	$\begin{array}{c} \text{hybrid}^b\\ B_0 \end{array}$	$\exp. \\ B_0$	$\delta_{ m hybrid} \stackrel{c}{\slash / \ \%}$
tra	ns-1-hydroxynapht	halene				,
A	/ MHz	1947	-14	1934	1942.100623(53)	0.42
В	/ MHz	1140	-8	1132	1133.623211(21)	0.14
\overline{C}	/ MHz	719	-5	714	716.017762 (14)	0.28
	7					
cis-	2-hydroxynaphtha	alene				
A	/ MHz	2862	-25	2837	2849.155543(64)	0.43
B	/ MHz	828	-4	823	824.632161(25)	0.20
C	/ MHz	642	-4	638	639.723697(15)	0.27
cis-	1-naphthaldehvde					
A	/ MHz	1389	-8	1380	1384.40872(21)	0.32
В	/ MHz	1004	-8	995	999.015243(71)	0.40
C	/ MHz	583	-4	579	580.551953(19)	0.27
	1					
tra	ns-2-naphthaldehy	de				
A	/ MHz	2824	-22	2802	2810.43194(15)	0.30
B	/ MHz	583	-3	580	581.095981(24)	0.19
C	/ MHz	483	-3	480	481.700564(18)	0.35

Table S5: Rotational constants of the four studied species at various stages of the calculations and comparison with the experimental values.

 ${}^{a}\Delta = B_{0} - B_{e} \qquad {}^{b}B_{0}^{hybrid} = B_{e}^{MP2} - (B_{e}^{B97-1} - B_{0}^{B97-1})$ ${}^{c}\delta_{hybrid} = (B_{exp.} - B_{hybrid})/B_{hybrid} \times 100$

	MP2	Δ^a	$hybrid^b$	scaled ^{c}	exp.	$\delta_{ ext{hybrid}} \stackrel{d}{\slash } \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$\delta_{ ext{scaled}} \stackrel{e}{}_{/ \%}$
$\begin{array}{c c} \textbf{Equilibrium} \\ A_e & / \text{ MHz} \\ B_e & / \text{ MHz} \\ C_e & / \text{ MHz} \end{array}$	$1947 \\ 1140 \\ 719$						
$\begin{array}{ll} \textbf{Ground state} \\ A_0 & / \text{ MHz} \\ B_0 & / \text{ MHz} \\ C_0 & / \text{ MHz} \end{array}$			1934 1132 714		$1942.100623(53) \\1133.623211(21) \\716.017762(14)$	$0.42 \\ 0.16 \\ 0.26$	
		-14 -8 -4	$136 \\ 1933 \\ 1132 \\ 715$	$1941 \\ 1134 \\ 717$	$\begin{array}{c} 1941.73727(53)\\ 1132.951050(68)\\ 716.402565(43)\end{array}$	$0.44 \\ 0.11 \\ 0.23$	0.015 -0.051 -0.030
$egin{array}{llllllllllllllllllllllllllllllllllll$		-16 -6 -4	166.4 1931 1133 715	$1939 \\ 1135 \\ 717$	$1939.60653 (22) \\1134.394385 (36) \\716.571336 (25)$	$0.44 \\ 0.11 \\ 0.23$	0.016 -0.053 -0.032
		-15 -9 -4	272.2 1933 1131 715	1941 1133 717	$1941.1817 (43) \\1132.3400 (16) \\716.785770 (55)$	$0.43 \\ 0.12 \\ 0.23$	0.003 -0.042 -0.027
$egin{aligned} {f v_{50}} = {f 2} \ E & / \ { m cm}^{-1} \ A_v & / \ { m MHz} \ B_v & / \ { m MHz} \ C_v & / \ { m MHz} \end{aligned}$		-19 -6 -3	332.8 1929 1134 715	1937 1136 717	1937.1523(11) 1135.16069(49) 717.121942(55)	$0.44 \\ 0.11 \\ 0.23$	0.019 -0.052 -0.030

Table S6: Rotational constants of trans-1-hydroxynaphthalene in the ground and excited vibrational states. Error (1σ) on experimental parameters are given between parenthesis in units of the last digit.

 ${}^{a}\Delta = B_{0} - B_{e} \qquad {}^{b}B_{0}^{hybrid} = B_{e}^{MP2} - (B_{e}^{B97-1} - B_{0}^{B97-1})$ ${}^{c}B_{\text{scaled}} = B_{v} \text{ hybrid} \times B_{0} \exp/B_{0} \text{ hybrid}$

 ${}^{d}\delta_{\text{hybrid}} = (B_{\text{exp.}} - B_{\text{hybrid}})/B_{\text{hybrid}} \times 100$ ${}^{e}\delta_{\text{scaled}} = (B_{\text{exp.}} - B_{\text{scaled}})/B_{\text{scaled}} \times 100$

Table S7: Full set of rotational parameters (in MHz) for trans-1-hydroxynaphthalene in excited vibrational states. Error (1 σ) on parameters are given between parenthesis in units of the last digit. Parameters in brackets are fixed to the ground state value.

	$v_{51} = 1$	$v_{50} = 1$	$v_{51} = 2$	$v_{50} = 2$
A_v	1941.73727(53)	1939.60653(22)	1941.1817(43)	1937.1523(11)
B_v	1132.951050(68)	1134.394385(36)	1132.3400(16)	1135.16069(49)
C_v	$716.402565\left(43 ight)$	716.571336(25)	716.785770(55)	717.121942(55)
$\Delta_J \times 10^6$	17.9061(20)	18.0313(10)	17.9912(16)	18.0842(16)
$\Delta_{JK} \times 10^3$	0.0185871(92)	0.0134017(43)	0.016961(48)	0.014049(34)
$\Delta_K \times 10^3$	0.04257(14)	0.045458(62)	0.04502(35)	0.03692(23)
$\delta_J \times 10^6$	6.41897(11)	6.47433(58)	[6.43578]	[6.43578]
$\delta_K \times 10^3$	0.0360674(88)	0.0338925(51)	[0.0351740]	[0.0351740]
# lines	2567	2 547	1 093	1 035
RMS / kHz	34	34	72	44

 a Hybrid rotational constants and MP2 centrifugal distorsion terms, see text $^b\delta=(B_{\rm Exp.}-B_{\rm Calc})/B_{\rm Calc.}\times 100$

Table S8: Calculated charges on atoms in naphthalene, benzaldehyde and the two isomers of naphthaldehyde at the MP2/aug-cc-pVQZ level using NBO6 software. Values are given in atomic units. See Fig. 5 for atomic numbering.

		1-naphth	aldehyde	2-naphth	aldehyde	naphthalene	ber	zald	ehyde
atom	#	cis	trans	cis	trans	-	atom	#	÷
С	1	-0.0738	-0.0937	-0.1125	-0.0997	-0.1726	\mathbf{C}	1	-0.0954
\mathbf{C}	2	-0.2295	-0.2246	-0.1247	-0.1105	-0.2177	\mathbf{C}	2	-0.2109
\mathbf{C}	3	-0.1628	-0.1388	-0.2209	-0.2056	-0.2177	\mathbf{C}	3	-0.2029
\mathbf{C}	4	-0.1641	-0.2116	-0.1730	-0.1916	-0.1726	\mathbf{C}	4	-0.1497
\mathbf{C}	5	-0.1352	-0.1279	-0.2285	-0.1341	-0.1726	\mathbf{C}	5	-0.2112
\mathbf{C}	6	-0.2326	-0.2358	-0.1421	-0.2395	-0.2177	\mathbf{C}	6	-0.2130
\mathbf{C}	7	-0.1812	-0.2067	-0.2324	-0.2096	-0.2177	Η	7	0.2354
\mathbf{C}	8	-0.2247	-0.2101	-0.1789	-0.1277	-0.1726	Η	8	0.2142
\mathbf{C}	9	0.0053	0.0015	-0.0601	-0.1527	-0.0192	Η	9	0.2068
\mathbf{C}	10	-0.0863	-0.0360	-0.0154	0.0086	-0.0192	Η	10	0.2141
Η	11	0.2483	0.2108	0.2132	0.2020	0.1928	Η	11	0.2134
Η	12	0.2132	0.2165	0.2168	0.2167	0.2072	Η	12	0.1093
Η	13	0.2158	0.2151	0.2031	0.2152	0.2072	Ο	13	-0.4800
Η	14	0.2002	0.1969	0.2132	0.1996	0.1928	\mathbf{C}	14	0.3698
Η	15	0.2087	0.2088	0.2128	0.2105	0.1928			
Η	16	0.2074	0.2050	0.2160	0.2335	0.2072			
Η	17	0.2145	0.2366	0.2166	0.1975	0.2072			
Η	18	0.1087	0.1136	0.1095	0.1082	0.1928			
Ο	19	-0.4903	-0.4805	-0.4806	-0.4817				
\mathbf{C}	20	0.3583	0.3607	0.3677	0.3607				

Table S9: Calculated charges on atoms in naphthalene, hydroxybenzene, and the two isomers of hydroxynaphthalene at the MP2/aug-cc-pVQZ level using NBO6 software. Values are given in atomic units. See Fig. 5 for atomic numbering.

		1-hvdrox	vnaphthalene	2-hvdrox	vnaphthalene	naphthalene	hvdr	oxvb	enzene
atom	#	cis	trans	cis	trans		atom	#	
	1	0.2765	0.2716	-0.3345	-0.2098	-0.1726	С	1	0.3414
	2	-0.2756	-0.2554	0.3487	0.2520	-0.2177	\mathbf{C}	2	-0.2838
	3	-0.2136	-0.2243	-0.2971	-0.2815	-0.2177	\mathbf{C}	3	-0.1891
	4	-0.1675	-0.1637	-0.1172	-0.1845	-0.1726	\mathbf{C}	4	-0.2452
	5	-0.1778	-0.1583	-0.2127	-0.1457	-0.1726	\mathbf{C}	5	-0.1900
	6	-0.2466	-0.2540	-0.2294	-0.2481	-0.2177	\mathbf{C}	6	-0.3103
	7	-0.1938	-0.1356	-0.2295	-0.2186	-0.2177	Η	7	0.2241
	8	-0.1811	-0.2261	-0.1486	-0.1936	-0.1726	Η	8	0.2142
	9	-0.0945	-0.0539	0.0058	-0.0029	-0.0192	Η	9	0.2142
	10	-0.0007	-0.0876	-0.0411	-0.0441	-0.0192	Η	10	0.2140
	11	0.1795	0.2282	0.1936	0.2048	0.1928	Η	11	0.2077
	12	0.2105	0.2033	0.2099	0.2134	0.2072	Η	12	0.4729
	13	0.2161	0.2118	0.2144	0.2119	0.2072	Ο	13	-0.6700
	14	0.2070	0.2075	0.2065	0.1990	0.1928			
	15	0.1963	0.2026	0.1960	0.2069	0.1928			
	16	0.2254	0.2026	0.2267	0.2104	0.2072			
	17	0.2146	0.2101	0.2046	0.2099	0.2072			
	18	0.4751	0.4785	0.4742	0.4749	0.1928			
	19	-0.6498	-0.6573	-0.6702	-0.6542				